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ABSTRACT
Gaze-assisted interaction has commonly been used in a standard
desktop setting. When interacting with large displays, as new
scenarios like situationally-induced impairments emerge, it is more
convenient to use the gaze-based multi-modal input than other
inputs. However, it is unknown as to how the gaze-based multi-
modal input compares to touch and mouse inputs. We compared
gaze+foot multi-modal input to touch and mouse inputs on a large
display in a Fitts’ Law experiment that conforms to ISO 9241-9. From
a study involving 23 participants, we found that the gaze input has
the lowest throughput (2.33 bits/s), and the highest movement time
(1.176 s) of the three inputs. In addition, though touch input involves
maximum physical movements, it achieved the highest throughput
(5.49 bits/s), the least movement time (0.623 s), and was the most
preferred input.
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1 INTRODUCTION
Human-Computer Interaction involves numerous application con-
texts and scenarios where hands-free interaction is crucial. Appli-
cations demanding rich interactions for efficiency, and users with
accessibility needs rely on eye tracking technology as a hands-free
input modality [Duchowski 2007]. As an accessible technology, gaze
input serves as the primary mode of communication for individuals
with severe motor and speech disability [Majaranta and Räihä 2002;
Rajanna 2016]. As gaze is increasingly used as an input modality, its
applicability is not just limited to accessible technology, but there
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are emerging use cases such as leveraging gaze-assisted interaction
in situationally-induced impairments and disabilities (SIID) [Kane
et al. 2008]. In the case of SIIDs, a user’s hands are assumed to
be engaged in other tasks, and hence unavailable for selecting
interface elements or typing by using touch, mouse, or keyboard.
For example, the hands of a surgeon performing an operation, a
musician playing music, a worker on a factory assembly line, and
so on tend to be engaged in a specific task, and hence represent a
case of SIID.

Gaze-assisted interaction in a desktop setting as an efficient
interaction method or a solution to SIID has been previously ex-
plored [Hansen et al. 2008, 2016; Rajanna et al. 2017; Stellmach and
Dachselt 2012], and also compared against other inputs [Miniotas
2000; Soukoreff and MacKenzie 2004; Vertegaal 2008; Zhang and
MacKenzie 2007]. Gaze-assisted interaction on large displays has
various applications as people can interact with public displays,
screens in collaborative spaces, operation theaters, etc. While there
are various examples of using gaze input on large displays [Hatscher
et al. 2017; San Agustin et al. 2010; Vidal et al. 2013], its comparison
to other commonly used inputs like touch and mouse are limited. To
discuss a few relevant works that explored gaze-assisted interaction
on large displays, in an upright stance, Hatscher et al., demonstrated
the usability of gaze- and foot-based interaction on a large monitor
in operation theaters [Hatscher et al. 2017]. In this setup, a physician
performing minimally-invasive interventions can look and interact
with medical image data displayed on the large monitor with gaze
input. San Agustin et al., developed gaze-enabled public display (55
inches) where users can interact with high-density information
like a digital bulletin board with several notes on top of each
other [San Agustin et al. 2010].

These works demonstrate that in the cases of SIIDs or from
a usability perspective it is more relevant to use gaze-assisted
interaction on large displays (∼ 84 inches). However, the majority
of the table mounted trackers (Tobii, EyeTribe, GazePoint, SMI, etc.)
are built for 24-inch screens. To achieve the best performance, the
optics and IR lights are tuned for the viewing angles that correspond
to screens up to 24 inches. This does not mean that we cannot
use these trackers on large screens, but they do not track well.
Therefore, for someone trying to use these commonly available eye
trackers on large displays, it is unknown as to 1) How the accuracy
and efficiency of pointing and selecting with gaze input compare
against touch and mouse inputs that are used commonly on the
large displays? 2) How does the usability of gaze input compare to
mouse and touch inputs? 3) What should be size of the targets (this
influences the index of difficulty)? 4) While the touch input requires
a user to physically move in front of the display to reach different
points on the display, andmouse input requires largermovements of
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the wrist, do users feel touch and mouse inputs stressful compared
to the gaze input? The lack of answers to these queries motivated
us to conduct a Fitts’ Law evaluation that conforms to ISO 9241-9
standardization1.

Fitts’ Law models the human movement analogous to the way
information is transmitted [Soukoreff and MacKenzie 2004]. Differ-
ent kinds of movement tasks have different indices of difficulties
expressed in bits/sec. To perform amovement task, a certain number
of bits of information is transmitted by the human motor system.
The performance of amovement task can be quantified (throughput)
by dividing the number of bits transmitted by the movement time
(MT) [Soukoreff and MacKenzie 2004; Zhang and MacKenzie 2007].
Furthermore, Fitts’ Law has been used in HCI research in two ways,
first, to predict the time it takes (movement time) for a user of
a graphical interface to move the cursor to the target and click
it. Second, to compare the speed and accuracy of different input
methods through a single statistic called throughput [Soukoreff and
MacKenzie 2004]. The throughput of an input method is computed
as follows:

Throuдhput =
IDe
MT

(1)

Where, IDe is the effective Index of Difficulty, and MT is the mean
Movement Time. The IDe is calculated as

IDe = loд2
(Ae
We
+ 1

)
(2)

Where, Ae is the effective distance to the target (amplitude), and
We is the effective target width which is calculated as

We = 4.133 × SDx (3)

Where, SDx is the standard deviation of the selection coordinates
(overshoot or undershoot) in a sequence.

In this study we compared three input methods for pointing and
selecting targets on a large display. The three input methods we
used were gaze+foot, touch, and mouse. While we initially consid-
ered gaze+dwell based activation, we did not include this input due
to low gaze tracking accuracy. Though we chose a nominal index
of difficulty (max 2.5 bits/s), from the pilot study we found that
the participants could not select all the targets without crossing
the error threshold. Hence, participants could not complete the
experiment when using gaze- and dwell-based selection, and this
is a major limitation of using gaze+dwell input on large displays.
However, with low indices of difficulties (∼ 1.0) gaze+dwell input
should be usable, but would constrain the number of targets.

2 PRIORWORK
Fitts’ Law evaluation of gaze input has been primarily conducted
in desktop settings, and the common selection methods considered
have been gaze+dwell, gaze+click, and mouse [MacKenzie 1992;
Miniotas 2000; Miniotas et al. 2006; Soukoreff and MacKenzie 2004;
Vertegaal 2008; Zhang and MacKenzie 2007]. Zhang et al., presented
the first work on Fitts’ law evaluation of gaze input that conforms
to ISO 9241-9 [Zhang and MacKenzie 2007]. The authors compared
gaze input with short and long dwell times and gaze+Spacebar with
mouse input. TheGaze+Spacebar eliminated thewaiting time, it was
the best selection method among gaze inputs with a throughput of

1https://www.iso.org/standard/30030.html [last accessed Jan 23rd 2018]

3.78 bits/s (mouse was 4.68 bits/s). Ware et al., presented a Fitts’ law
evaluation of gaze input [Ware andMikaelian 1987]. Three selection
methods were used along with gaze: a button press, dwelling, and
an onscreen select button. In an experiment where the participants
had to select one of the seven menu items arranged vertically, the
authors found that irrespective of the selection procedure, the gaze-
based selection methods took less than 1 second for target selection.

Miniotas et al., tested the validity of the findings from Ware et
al. [Ware and Mikaelian 1987], by comparing the performance of
an eye tracker and a mouse in a simple pointing task [Miniotas
2000]. The authors found that the selection time is longer for
the eye tracker than for the mouse by a factor of 2.7. Zhai et al.,
proposed MAGIC: Manual and Gaze Input Cascaded Pointing to
improve the usability of gaze input [Zhai et al. 1999]. A Fitts’ law
evaluation was conducted by using 3 input methods which included
an isometric pointing stick and two versions of MAGIC pointing.
The authors found that the completion time and target distance did
not completely follow Fitts’ law when using MAGIC pointing, but
when considering both target size and target distance the data fit
the Fitts’ law but relatively poorly. Pointing with two version of
MAGIC achieved a higher performance (4.55 and 4.76 bits/s) than
manual input (3.2 bits/s).

Vertegaal et al., presented a Fitts’ Law evaluation of gaze+click,
gaze+dwell, mouse, and stylus [Vertegaal 2008]. The performance of
these selection methods were compared in selection of large visual
targets. The index of difficulty varied from 1.28 bits/s to 3.6 bits/s.
The authors found that gaze+click outperformed the mouse by 16%.
However, eye tracking inputs suffered a high error rate of 11.7%
for manual click and 43% for dwell time click. Eye tracking with
manual click with an index of performance of 10.9 bits/s appeared
to be the best trade off between speed and accuracy. We observe
that all the Fitts’ Law evaluations we discussed were conducted
in a desktop setting, and the participant was always seated while
using the various input methods. Contrary to this typical setup, our
work performs Fitts’ Law evaluation of the gaze input on a large
display, while comparing it against mouse and touch inputs. Also,
the participants used the three inputs in an upright stance.

3 FITTS’ LAW EXPERIMENT DESIGN
For the Fitts’ Law experiment we used the software 2 developed by
Soukoreff and MacKenzie [MacKenzie 1992; Soukoreff and MacKen-
zie 2004]. Specifically, we used Fitts’ Task Two which is a multi-
directional point-and-select task. For each trial the target to be
selected is highlighted in red color, and once the highlighted target
is selected, the target that is opposite to the current target gets
highlighted. In accordance with the previous Fitts’ law studies on
gaze pointing, we used a nominal index of difficulty that ranged
from 2.0 to 2.5 [Zhang and MacKenzie 2007]. Hence, the amplitude,
i.e., the distance to the target we chose were 1650 px and 1250 px,
and the target widths were set to 350 px and 450 px. Figure 1 shows
the Fitts’ Law experiment setup on a large display.

3.1 Selection Methods
We chose three selection methods: 1) gaze+foot, 2) touch, and 3)
mouse, and all the three methods were used in an upright stance.
2http://www.yorku.ca/mack/FittsLawSoftware/ [last accessed Jan 23rd 2018]
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Figure 1: Fitts’ Law Experiment: a participant, in an
upright stance, performing a multi-directional point-and-
select Fitts’ Law task (1) shown on a large display. Also, an
eye tracker is mounted on a tripod (2).

Figure 2: The foot controller used in the gaze+foot selection
method. 1 - a force sensitive resistor, microcontroller, and
bluetooth module in a 3D printed case, 2 - foot interaction.

For gaze+foot input, the eye tracker was mounted on a tripod, and
placed in between the user and the display as shown in Figure 1.
The eye tracker was removed when using the mouse and touch
inputs. For the mouse input, the participant used a wireless mouse
placed on a tall, height adjustable table placed next to the user, and
for the touch input, the participant directly touched the screen to
select targets.

To achieve the gaze+foot interaction, we enhanced a gaze+foot
input system developed by Rajanna et al. [Rajanna and Hammond
2016], which consists of an eye trackingmodule and a foot controller
(Figure 2), and the on-screen cursor follows the user’s gaze. To select
a target the user first places the cursor on the target by focusing
on it, and then selects it by pressing a pressure sensor, attached to
the foot controller, with the foot. The foot controller connects to
the eye tracking system over Bluetooth, and the entire circuitry is
placed inside a portable 3D printed case.

3.2 Display and Gaze Tracking
The experiment was conducted on a Microsoft Surface Hub 3, a
large (84-inch) touch enabled display. We used a Gazepoint GP3 HD
3https://www.microsoft.com/en-us/surface/devices/surface-hub/tech-specs

tracker for eye tracking. Since the tracking was not accurate enough
around the left and right edges of the 84-inch screen, the interaction
space was set to 69 inches. The tracker had a manufacturer reported
accuracy of 0.5° to 1.0° of visual angle, and had a sampling rate of
150 Hz. However, to test the accuracy of the tracker for our setup
with a large display, we recruited 7 (6 M, 1 F) participants, and
repeatedly recorded the tracking accuracy values (following the
standard calibration) on a 9-points grid interface we developed. A
total of 39 accuracy values were recorded, and the average tracking
accuracy was 4.6° of visual angle (min 2.6°, max 9°).

3.3 Participants and Procedure
For the Fitts’ Law experiment we recruited 23 participants (19 M,
4 F) with their ages ranging from 19 to 32 (µaдe = 23). Data from
4 participants were excluded since they could not complete the
gaze input due to low tracking accuracy. Also, 3 participants who
were wearing glasses removed their glasses (for better gaze tracking
accuracy) during the experiment. At the beginning of the study,
each participant was briefed about the Fitts’ Law task and the kind
of inputs they would be using for target selection. For each input
method (e.g., mouse) the participant completed one sequence of
trials to familiarize themselves with the system before the actual
data collection began. The participants used three input methods–
gaze+foot, mouse, and touch–for target selection, and the order
of input methods used by the participants was counterbalanced
according to the Latin square design.

For each input method the participant completed 4 blocks of
target selection task, and each block had four sequences of trials as
we used two amplitudes (1650 px and 1250 px) and two target widths
(350 px and 450 px). In each sequence, there were 13 trials, hence, a
total of 3,952 trials (13 trials × 4 seq × 4 blocks × 19 participants)
were completed for each input. Also, a total of 11,856 trials (3,952 ×
3 inputs) were completed from all the three inputs. The participants
were allowed to rest for aminute between each block, and in the case
of gaze input, the participants were re-calibrated if the calibrated
stance was disturbed between the blocks.

4 RESULTS AND DISCUSSION
We conducted a one-way ANOVA with replication on the four
dependent variables (DVs): 1) movement time, 2) throughput, 3)
error rate, and 4) effective target width. The independent factor was
the ‘selection method’ which had three levels: 1) mouse, 2) touch,
and 3) gaze. Table 1 shows the result of ANOVA on the DVs, and
also the mean and standard deviation of the selection methods for
each DV.

We observe that the factor ‘selection method’ is significant (p
< 0.05) for all the four DVs, i.e., the value of a DV differs among
the selection methods. Out of all the selection methods, ‘touch’
achieves the highest throughput (5.49 bits/sec), consequently it
has the least movement time, error, and effective target width.
Similarly, ‘gaze’ input has the lowest throughput (2.33 bits/sec),
consequently it has the highest movement time, error, and effective
target width. Post-hoc tests with Bonferroni correction showed
that for DVs movement time, throughput, and effective target
width the difference between each pair of the selection methods,
(mouse, touch) (mouse, gaze) (touch, gaze), was significant (p <
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Table 1: Fitts’ Evaluation: ANOVA and post-hoc analysis (p
values highlighted in gray indicate significance at α = 0.05).

Selection Method
[Ms, Th, Gz]

Mean Std. Dev ANOVA

Movement
Time (ms)

Ms = 777.884
Th = 623.253
Gz = 1176.54

152.23
139.50
561.14

F(2,606) = 242.196
p = 0.000

Throughput
(bits/s)

Ms = 3.449
Th = 5.498
Gz = 2.331

0.885
1.487
1.001

F(2,606) = 755.789
p = 0.000

Error Rate (%)
Ms = 1.0374
Th = 0.6073
Gz = 8.7298

3.3501
3.0006
9.9549

F(2,606) = 161.763
p = 0.000

Effective Target
Width (pixels)

Ms = 301.671
Th = 198.462
Gz = 407.084

207.508
272.184
285.128

F(2,606) = 51.659
p = 0.000

Figure 3: Comparison of estimated marginal means for
DVs ‘Throughput’ and ‘Error Rate’ for the three selection
methods. The error bars represent standard error of the
mean.

Figure 4: Comparison of estimated marginal means for DVs
‘Movement Time’ and ‘Effective Target Width’ for the three
selection methods. The error bars represent standard error
of the mean.

0.05). However, for the DV error, the difference between each pair
of selection methods was significant except for the pair (mouse,
touch) where p = 0.32 > 0.05. Figure 3 and Figure 4 compare the
means of the three selection methods for each DV.

Though theoretically it appears that gaze input should achieve a
higher throughput than the mouse and touch inputs, since an eye

movement between two distant targets is quicker [Vertegaal 2008]
than the mouse or touch, the results contradict our assumption.
This is due to the fact that though the user may move the cursor
quickly from target A to the vicinity of target B, placing the cursor
exactly on target B and selecting it consumes more time due to
lower tracking accuracy on the large display. Therefore, the results
suggests that there are two ways to improve the throughput of
gaze-based selection on large displays. First, by reducing the index
of difficulty of the task, i.e., primarily by increasing the target width,
and also by reducing the distance between the targets. Second, by
developing eye trackers exclusively for the large displays (larger
than 24 inches). Also, in the interviews the participants shared that
with gaze+foot interaction it is essential to achieve the synchro-
nization between pointing with gaze and selecting with foot.

Furthermore, we wanted to understand if the users’ performance,
specifically throughput and error, improve as they progress from
block 1 to block 4 for a given selection method (e.g., touch). Hence,
we conducted a one-way ANOVAwith replication on the dependent
variables ‘throughput’ and ‘error’ for each of the selection methods,
and the independent factor was ‘block.’ Table 2 shows the block
mean and standard deviation for various DVs, and corresponding
ANOVA results.

Table 2: Fitts’ Evaluation: ANOVA of block performance (p
values highlighted in gray indicate significance at α = 0.05).

Block
[B1 to B4]

Mean [Std. Dev] ANOVA

Mouse Throug
-hput (bits/s)

B1 = 3.19 [0.91], B2 = 3.48 [0.80]
B3 = 3.65 [0.91], B4 = 3.46 [0.86]

F(3,225) = 7.75
p = 0.000

Touch Throug
-hput (bits/s)

B1 = 4.78 [1.39], B2 = 5.58 [1.22]
B3 = 5.68 [1.56], B4 = 5.93 [1.51]

F(3,225) = 13.23
p = 0.000

Gaze Throug
-hput (bits/s)

B1 = 2.09 [1.01], B2 = 2.49 [1.03]
B3 = 2.29 [0.97], B4 = 2.44 [0.95]

F(3,225) = 5.61
p = 0.001

Mouse Error
Rate (%)

B1 = 0.91 [3.76], B2 = 0.91 [2.50]
B3 = 0.70 [2.23], B4 = 1.61 [4.40]

F(3,225) = 1.68
p = 0.172

Touch Error
Rate (%)

B1 = 0.80 [3.45], B2 = 0.10 [0.88]
B3 = 1.01 [3.83], B4 = 0.50 [2.90]

F(3,225) = 1.38
p = 0.250

Gaze Error
Rate (%)

B1 = 10.3 [10.7], B2 = 8.90 [9.23]
B3 = 7.89 [9.31], B4 = 7.79 [10.4]

F(3,225) = 1.38
p = 0.250

We observe that the factor ‘block’ is significant for DVs gaze,
mouse, and touch throughputs. The throughput generally increases
as the user progresses from block 1 to block 4, which is an indication
that the users’ performance does improvewithmore exposure to the
selection method. However, we also see that the difference in ‘error’
between the blocks is not significant for all the DVs. This suggests
that the users get quicker in selecting targets with subsequent
blocks, however, the accuracy of selection remains the unchanged.

4.1 Subjective Feedback
Each participant rated their experience of using the three selection
methods on a Likert scale (1-very low to 7-very high) for various
physiological measures. Figure 5 summarizes the mean value of
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Figure 5: Subjective Feedback - lower score is better.

each measure. As we may expect, touch and mouse results in
increased shoulder/wrist fatigue and physical demand on the large
displays compared to the gaze input. On the contrary, the gaze
input results in increased mental demand and eye fatigue compared
to touch and mouse inputs. However, gaze input has an added
advantage of enabling hands-free interactions that are crucial in
the cases of SIIDs. We further analyzed the ratings using a one-
way ANOVA with replication and considering ‘selection method’
as the independent factor. We found that ‘selection method’ is
not a significant factor for DV ‘Physical Demand’ [F(2,36) = 1.506,
p > 0.05]. However, ‘selection method’ is a significant factor for
DVs ‘Mental Demand’ [F(2,36) = 19.09, p < 0.05], ‘Eye Fatigue’
[F(2,36) = 16.128, p < 0.05], and ‘Shoulder/Wrist Fatigue’ [F(2,36) =
34.283, p < 0.05]. Also, for DVs ‘Mental Demand’, ‘Eye Fatigue’, and
‘Shoulder/Wrist Fatigue’ where the ANOVA results are significant,
post-hoc tests with Bonferroni correction showed that the effect
was due to the difference between (gaze, touch) and (gaze, mouse),
but the difference between (touch, mouse) was not significant.

5 CONCLUSION
As new scenarios emerge making the gaze input more relevant on
large displays, we wanted to compare the usability and efficiency
of gaze input to other commonly used inputs. Hence, we compared
the gaze input against mouse and touch inputs on a large display in
a Fitts’ Law evaluation that conforms to ISO 9241-9 standardization.
Though gaze enables faster cursor movements between the targets
theoretically, we found that gaze input had the lowest throughput
and highest error rate. On the contrary, although touch results in
increased shoulder/neck fatigue, it achieves the highest throughput
and lowest error rate, and was the most preferred input.
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