DyGazePass: A Gaze Gesture-Based Dynamic Authentication System to Counter
Shoulder Surfing and Video Analysis Attacks

Vijay Rajanna Adil Hamid Malla

Rahul Ashok Bhagat

Tracy Hammond

Sketch Recognition Lab, Dept. of Computer Science and Engineering, Texas A&M University

{vijay.drajanna, aaddil.hamid, rab248b, thammond}@gmail.com

Abstract

Shoulder surfing enables an attacker to gain the authentica-
tion details of a victim through observations and is becoming
a threat to visual privacy. We present DyGazePass: Dy-
namic Gaze Passwords, an authentication strategy that uses
dynamic gaze gestures. We also present two authentication
interfaces, a dynamic and a static-dynamic interface, that
leverage this strategy to counter shoulder surfing attacks.
The core idea is, a user authenticates by following uniquely
colored circles that move along random paths on the screen.
Through multiple evaluations, we discuss how the authen-
tication accuracy varies with respect to transition speed of
the circles, and the number of moving and static circles.
Furthermore, we evaluate the resiliency of our authentica-
tion method against video analysis attacks by comparing it
to a gaze- and PIN-based authentication system. Overall,
we found that the static-dynamic interface with a transition
speed of two seconds was the most effective authentication
method with an accuracy of 97.5%.

1. Introduction

Shoulder surfing generally refers to unsolicited access to a
user’s confidential information (e.g., interests, hobbies, sex-
ual preferences, login credentials, etc.) by an observer [6].
In this work, we focus on preventing shoulder surfing attacks
on a knowledge-based authentication method, i.e., using
passwords specifically in public and semi-private spaces.
Keypad monitoring commonly occurs at public places like
ATMs, kiosks, airport lounges, coffee shops, airplanes, and
semi-private spaces like offices, aimed at stealing the login
credentials of users [[12]. A report on global visual hack-
ing, presented by Ponemon Institute in 2016, found that in
business office environments the attacks happen on laptops,
tablets, smartphones, etc [[7]. They conducted shoulder surf-

2018 IEEE 4™ International Conference on Identity, Security,
and Behavior Analysis (ISBA)
978-1-5386-2248-3/18/$31.00 ©2018 IEEE

ing attacks in eight countries, and a staggering 91% of visual
attacks were successful, resulting in 613 units of breached
data of various types [[7]. Furthermore, 11% (69 units) of
the breached data were login credentials. To prevent shoul-
der surfing, we focus on gaze-based authentication, which
has been previously explored by [2| 3| 4, 9} [15]. The ex-
isting solutions are limited by low accuracy, the need for
precise gaze input, accurate recall of the gestures by users,
and susceptibility to video analysis attacks.

800 px 800 px

800
px

(a) (b)

Figure 1: a) Dynamic authentication interface with 10
uniquely colored circles placed at random positions, b) Static-
dynamic authentication interface comprising 5 static (S1, S2,
S3, S4, S5) and 5 dynamic circles.

We present, a gaze gesture-based approach to addressing
shoulder surfing on user authentication. The central idea of
our authentication system is, the interface comprises of 10
uniquely colored circles which move simultaneously along
random paths during an animation of N seconds. An ani-
mation is a time interval where all the circles move from
their source to destination locations. Analogous to a four
digit PIN, a user selects a set of four colors (out of 10) as her
password. To authenticate, the user follows the path of the
circle, colored with her password color, during an animation.
This animation is repeated four times allowing the user to
enter all four colors. For example, if the user’s password
is “red-blue-yellow-green" the user follows the red colored

circle during the first animation, blue during the second, and
so on. For a successful authentication, the scan-path of the
user’s gaze should match with the path of the colored circle
selected as the password, in each animation, for all the four
animations. We hypothesize that people would be able to
remember their password by associating the password col-
ors with their favorite colors, the colors of the objects they
frequently use (car, cloth), etc.

The two authentication interfaces we have developed are
the “dynamic interface" shown in Figure[Taland the “static-
dynamic interface" show in Figure[Tb] Since we targeted our
authentication system to be deployable at ATMs, kiosks,
laptops, or in general, devices with smaller screens, we
surveyed screen dimension{]ﬂ of ATMs by various vendors.
There is no single standardized size of the ATM screen,
but commonly used dimensions include 8", 10.1", 12.1",
15". We chose a median size of 11.5" which approximately
translates to a dimension of 800 x 800 pixels on a screen
with 98.44 PPI (screen size 1900 x 1200 px, 23") used in
our experiments. We evaluated our solutions through a two
phase user study. In the first phase, both dynamic and static-
dynamic interfaces were tested for their accuracy under two
animation speeds: 3 and 2 seconds. Since the static-dynamic
interface was found to be a more practical solution, we tested
its susceptibility to video analysis attack in the second phase.

2. Prior Work

Gaze as an input modality [[13] has enabled various gaze-
based authentication methods, against shoulder surfing, that
can be classified across three broad categories.

2.1. Gaze- and PIN-based Authentication

Kumar et al. [9]], presented “EyePassword," an authentication
method where the user enters sensitive input like password or
PIN by selecting from an onscreen keyboard using their gaze.
Khamis et al. [8], presented “GazeTouchPass," that allows
authentication on mobile phones though multiple switches
between gaze and touch input modalities.

2.2. Gaze Gesture-based Authentication

De Luca et al. [4], presented "Eye-Pass-Shapes", where a
user authenticates by drawing one of the eight gestures with
their eye movements. The system evaluations showed that
the eye gestures significantly increases security while being
easy to use. Best et al. [1]], presented a rotary interface for
gaze-based PIN code entry. Their solution is based on the
weighted voting scheme of numerals whose boundaries are
crossed by the streaming gaze points. The authentication
accuracy was found to be 71.16% with the PIN interface and
64.20% with the rotary interface.

' www.atmmarketplace.com [last accessed: 27th July 2017]

2www.ATMequipment.com [last accessed: 27th July 2017]

2.3. Gaze Pursuit-based Authentication

Rajanna et al. [14] presented an intelligent gaze gesture-
based authentication system to counter shoulder surfing at-
tacks. A user authenticates by her unique gaze patterns onto
moving geometric shapes. The system achieved an authenti-
cation accuracy of 99% with true calibration and 96% with
disturbed calibration. Vidal et al. [15] presented the idea
and the design of authentication using eye pursuits. The
authors proposed a pursuits-enabled screen that displays an
animation of fishes swimming in the fish tank. The user
can authenticate by looking at four specific fishes in the pre-
cise sequence. Cymek et al. [3]], presented an authentication
method, where the user follows the digits moving in verti-
cal and horizontal directions to authenticate. The system
accuracy was 97.57% in recognizing the digits entered.

As discussed before, the common limitation with gaze-based
authentication systems is having a low accuracy. As eval-
uated by De Luca et al. [5]], the error rate of various well
known gaze-based authentication methods varied from 9.5%
to 23.8%. Also, gaze authentication is susceptible to video
analysis attacks as demonstrated in [2}4]. Though Cymek et
al. [3] and Rajanna et al. [14] had accuracies of above 95%,
both were evaluated on larger screens. Furthermore, [14]
was susceptible to video analysis attacks, and [3] was not
evaluated for video analysis attacks. The contribution of
our work derives from trying to address these limitations.
Our authentication system achieves a high accuracy as we
leverage template matching to recognize the gestures. Also,
due to the dynamic nature of the interface, we show that our
system is not susceptible to single video iterative attack, and
has a low success rate with dual video iterative attack.

3. System Architecture

Our gaze gesture-based authentication system consists of two
main modules: 1) Gaze Tracking Module, and 2) Authenti-
cation Engine. A working model of the system is depicted
in Figure Zh.

Gaze Tracking Module: The system uses "The Eye Tribe"
trackelﬂ which is a table mounted eye tracking sensor that
provides (X,Y) coordinates of the user’s gaze on the screen
at 60 Hz. For the eye tracker to work efficiently, the user
is positioned such that the face is centered in front of the
monitor at a distance of 45 - 75 cm.

Authentication Engine: The authentication engine is the
central module that runs on a computer and receives (X,Y)
gaze-coordinates from the eye tracker. This module is re-
sponsible for positioning the circles at random locations on
the interface, and generating a random path for each cir-
cle. The module also implements the scan-path matching
algorithm to authenticate a user.

3www.theeyetribe.com [last accessed: 27th July 2017]

Virtual
Circle

T

1/3 2/3

- S~o_ P3(xy)

Figure 2: a) A user is authenticating by following the paths
of four uniquely colored circles chosen as the password (1
- Authentication interface, 2 - Eye tracker), b) Distribution
of Random Points: distribution of random points (P1, P2,
P3) for the path of a circle (yellow). The random points are
beyond 1/3 distance from the center along the radius of the
virtual circular boundary.

3.1. Authentication Procedure

The authentication procedure comprises of two processes:
1) one-time password selection, and 2) password entry. The
user selects four colors from a password selection window,
one for each of the four animations, that form the password
of the user. The user controls the authentication interface
through a set of hot-keys on a keyboard: ‘A’ to initiate move-
ment of the circles (start animation) and record gaze data,
“Z’ to recover from user mistakes (blink, sneeze, losing the
path, etc.) and discard recorded gaze data, and ‘M’ to submit
the password after following four circles.

4. Authentication Interface Dynamics

Both the dynamic and static-dynamic interfaces have 10
colored circles and have dimensions of 800 x 800 px, but
they differ in the number of moving circles during an ani-
mation. The two mechanisms that are common to both the
interfaces are: 1) random point generation, 2) generation of
the animation path and template for each colored circle.

4.1. Random Point Generation Algorithm

To generate n number of random points that are uniformly
distributed inside a circle with radius R, and area A, we
employ the method proposed by Leon-Garcia et al. [[10]. The
joint probability distribution function (PDF) of the random
points inside the circle, i.e., the joint distribution of random
variable X and random variable Y representing the x and y
coordinates of a random point is given by:

1 2 2 2
:TR% x+y SRC

otherwise

1
fX,Y(x7y) = {8

4.1.1 Initial Points for Circles

The initial locations of the circles on the interface are random
but uniformly distributed within the radius of 100 pixels from
the center of the interface (with dimensions of 800 x 800).
To generate the points, we use the Random Point Generation
Algorithm discussed in section {.1] with radius R. = 100
pixels for each of the colored circle. We are using a small
radius to make the initial positions of the circles closer which
makes video analysis attacks difficult.

4.2. Generating Animation Paths and Templates

Once the initial points are generated for the 10 circles, we
generate a random path for each circle. Each random path
is a set of three points that the circle traverses through from
its initial point. To generate the three points for a random
path, we use the same method of generating uniformly dis-
tributed random points discussed in section .| with a radius
of R, = 400. Additionally, we constrain the three points to
be beyond one-third of the distance from the center as shown
in Figure Q) Based on the interface dimension, duration of
animation, and the sampling frequency of the eye tracker, we
have established empirically that the template path should be
made up of 300 points that are equally distributed along its
path relative to the length of each line segment. Hence, all
the points on a path obtained from the above computation are
stored as the template path for matching against a scan-path.

4.3. Scan-path Matching Algorithm

We match the user’s scan-path against a circle’s traversed
path through the "Template Matching" algorithm, where
we compute the root-mean-square distance of the candidate
path (user’s scan-path) from all the template paths (circles’
traversed paths). The template path of a circle that is at
the least root-mean-square distance from the candidate path
is chosen as the circle (color) followed by the user. Our
template matching algorithm is based on $1 [16], but we
perform only sampling, and calculate the average distance
between the two paths.

Sampling: We down-sample both the candidate path and
the template paths to N=64 points, because of two reasons.
First, sampling reduces the noise in the scan-path due to
inherently jittery eye movements, and approximates the
path to a good extent. Second, down-sampling reduces the
computation required during the matching phase. Figure 3]
shows the sampling phase of a scan-path.

Matching: To compute the average distance between a can-
didate path and a template path with N points, as shown in
Figure[3] we use Equation 1,

p§1 \/(C[P}x —T[plx)*+ (Clply — T[ply)?

N

ADT = 6]

Scan-Path Sampling Templz?te
N=64 Matching
4
4 1
! SN
! TN ™~
H N i
H] =
i by =
! o N
I N _
--__———-'l “Rr1n /’,\\
Gaze Candidate
Points path (C)

Figure 3: Sampling and Template Matching: a user’s
scan-path is sampled to N=64 points (candidate path), and
matched against paths of all the circles (template paths).

where p is a point on path, C - candidate path, T - template
path, and ADT - average distance to template.

5. Authentication Interfaces
5.1. Dynamic Authentication Interface

The dynamic authentication interface comprises of 10
uniquely colored circles that are distributed randomly on
the interface. Most importantly, the circles traverse along
random paths during an animation, and once they reach their
final locations at the end of the animation, they interchange
their positions in a random fashion.

5.2. Static-Dynamic Authentication Interface

We further modified the dynamic interface to develop the
static-dynamic interface for two reasons. First, although
the dynamic interface with 10 moving circles introduces
enough randomness to prevent both shoulder surfing and
video analysis attacks, a few users were overwhelmed by
the visual cluttering of the interface as we found during
the pilot studies. This means, although the user can start
following a circle, once all the circles come closer or overlap
during an animation, the user may lose sight of the circle,
leading to recognition error. Second, since all the 10 circles
move within a space of 800 x 800 px, two random paths
might be similar which again leads to recognition failures
that negatively affect the accuracy.

Considering these factors, we designed the static-dynamic
authentication interface in such a way that only 5 out of the
10 circles move during an animation and the other 5 circles
remain static. However, a dynamic (moving) circle on the
current animation can continue to be a dynamic circle or
become a static circle on the subsequent animation; the same
is true for a static circle. Hence while authenticating, the
user mostly ends up following a few dynamic circles and
focusing on a few static circles. Since random placement of
the static circles may bring two circles closer and result in
recognition errors, we fixed the locations for static circles

(Figure [TB)) along the virtual circular boundary at angles 45°,
135°, 225°, 315°, and at the center of the rectangle.

5.2.1 Scan-path and Fixation Matching

Unlike the dynamic interface, we need to first distinguish
if the user followed a circle or fixated on a circle in the
static-dynamic interface. To accomplish this, at the end of
every animation, we compute the length of the user’s scan-
path. If the length of the scan-path is above the dispersion
threshold (PathLength > d,;, = 300 pixels), we use the scan-
path matching algorithm. However, if the length of the
scan-path is below the dispersion threshold (PathLength <
d;;, = 300 pixels), we use the centroid method (Figure @ to
recognize the target circle on which the user was fixated.

800 px

(2]

Gaze Points

Mo
. o

800
px

- 0

(@) (0

(b)

Figure 4: a) Centroid Method: to recognize the static circle
focused on by the user, the centroid (c(x,y)) of the gaze
points is found and distances to all the static shapes are
calculated to find the least distance, b) PIN Interface with 10
digits spaced evenly.

6. Evaluation and Results

We recruited 20 participants (16 male, 4 female) whose
ages ranged from 18 to 31 (Uge. = 23.15). The participants
entered passwords on both dynamic and static-dynamic in-
terfaces, and the order of the interface presented to the par-
ticipants was counterbalanced. Before the study, each par-
ticipant was briefed on the authentication system, calibrated
with an eye tracker on a 1900 x 1200 px monitor, and was
trained on the interface for a maximum of 2 minutes.

6.1. Dynamic Authentication Interface

We evaluated the dynamic interface under two conditions by
varying the animation time. To evaluate the system accuracy
in recognizing the true password and authenticating the user,
each user entered a password that was selected randomly by
the experiment facilitator. This procedure was repeated for a
total of two true passwords. Next, to test the system’s ability
to reject the false password, the experiment facilitator set a
different password (unknown to user), and the participant

attempted to access the system by guessing the password.
This is similar to testing the system with true negatives, and
this procedure was repeated for a total of two passwords.
We tested the above procedures, i.e., entering two true and
two false passwords, under two conditions by setting the
animation speed of the interface to 3 seconds and 2 seconds.
We tested two animation speeds since the goal was to achieve
lower authentication time while supporting high accuracy.

6.1.1 System Accuracy

The system accuracy on the dynamic interface for 3 and 2
seconds animations are listed in Table [Tl

Table 1: Dynamic interface - 3 & 2 Seconds Animations:
Confusion Matrix [TP-True Password, FP-False Password],
Acc-Accuracy, F-F_Measure (higher F[0 to 1] value is better)

3 Seconds 2 Seconds

FP 100% 100%

6.1.2 Recognition Error

For a deeper analysis of the recognition accuracy, as shown
in Table[2] we computed how many of the true passwords
entered by the user were correctly recognized (0 error) by
computing the Levenshtein distance [11]]. Levenshtein dis-
tance is a measure of the number of entries in the password
recognized by the system that are correct and in the right
place when compared to the true password entered. For
example, if the true password “pink-green-yellow-white" en-
tered by the user is recognized as “pink-green-yellow-white"
the Levenshtein distance is 0, i.e., the password has no errors
(accepted). However, a password recognized as “pink-red-
yellow-white" has a Levenshtein distance of 1 (rejected)
since the system misrecognized “green" as “red."

Table 2: Dynamic Interface: recognition error based on the
Levenshtein distance (higher O error is better).

Levenshtein 3 Seconds
distance 2 Seconds
0 Error 85% (34/40) 82.5 (33/40)
1 Error 15% (6/40) 17.5% (7/40)

6.1.3 Discussion

On the dynamic interface, sometimes, even when the par-
ticipants followed the correct circle, the system wrongly

recognized the circle followed. This kind of error is due
to two circles having similar paths, and this is a limitation
with the interface having many moving circles. Furthermore,
the users could consistently keep track of the circles at the
animation speed of 3 seconds, but found it a little difficult at
2 seconds resulting in reduced accuracy.

6.2. Static-Dynamic Authentication Interface

We followed the same evaluation procedure as the dynamic
interface. Each participant entered two true and two false
passwords under two conditions, i.e., the animation speed of
the interface was set to 3 seconds and 2 seconds.

6.2.1 System Accuracy

The system accuracy on the static-dynamic interface for 3
and 2 seconds animations are listed in Table 3l

Table 3: Static-dynamic Interface - 3 & 2 Seconds Ani-
mation: Confusion Matrix [TP-True Password, FP-False
Password], Acc-Accuracy, F-F_Measure (higher F is better).

3 Seconds

2 Seconds

TP|97.5% 2.5% 95% 5%
98.75%0.99
FP 100% 100%

97.5%0.97

6.2.2 Recognition Error

Table[d] show the recognition errors for all the true passwords
entered under two experiment conditions (3 and 2 seconds
animations) on the static-dynamic interface.

Table 4: Static-dynamic Interface: recognition error based
on the Levenshtein distance (higher O error is better).

LV distance 3 Seconds 2 Seconds
0 Error 97.5% (39/40) 95% (38/40)
1 Error 2.5% (1/40) 5% (2/40)

6.2.3 Discussion

With the static-dynamic interface, participants expressed that
it was easy and required less attention to follow the moving
circles even when the animation speed was set to 2 seconds.
This was due to fewer or no overlapping circles, since only
5 circles move during an animation. Also, to compare the
accuracy, static-dynamic interface outperforms dynamic in-
terface both with 3 (dynamic 92.5%, static-dynamic 98.75%)
and 2 (dynamic 91.25%, static-dynamic 97.5%) seconds an-
imations. Furthermore, there was no statistical difference

in the accuracies of the static-dynamic interface between 3
and 2 seconds (matched-pairs t-test P = 0.58 > 0.05). Since
lower authentication time is better, all these factors strongly
suggest that the static-dynamic interface with 2 seconds ani-
mation is the most practical solution.

7. Gaze- and PIN-based Authentication

To compare the accuracy of our authentication interface and
its susceptibility to video analysis attacks through multiple
threat models, we developed a Gaze- and PIN-based authen-
tication system. The PIN-based authenticating interface uses
a standard layout of numbers arranged in a 4 x 3 grid as seen
on most ATMs. For consistency in comparison, the numeric
grid was also placed in a the space of a 800 x 800 px square
as shown in Figure[dbl A user authenticates with a PIN of
4 digits, and to enter the PIN with gaze, the user first looks
at the digit and presses a hot key (A). We chose a hot key
as we wanted to be consistent with the activation method on
the colored circles interface where an animation is initiated
by pressing a hot key(A).

7.1. PIN Recognition

PIN recognition is a simple process that uses Euclidean
distance between the points. For each recorded gaze point,
we compute the Euclidean distance to the center of every
digit on the interface. The digit at the least distance from the
gaze point is selected as the digit entered by the user. If all
the 4 digits entered by the user match with the PIN, the user
is authenticated.

7.2. Evaluation and Results

The same set of participants who evaluated gaze gesture-
based interfaces also evaluated the gaze and PIN-based inter-
face. Also, similar to the other interfaces, each participant
entered two true and two false passwords.

7.2.1 System Accuracy

Table [5] and Table [6] show the system accuracy and recogni-
tion error respectively.

Table 5: PIN Interface: Confusion Matrix, Authentication
Accuracy, and F-Measure (higher F value is better).

True Pass 75% 25%

False Pass 100% 87.5%| 0.86

Table 6: PIN Interface: Recognition error based on the
Levenshtein distance.

75% (30/40) 17.5% (7/40) 2.5% (1/40) 59 (2/40)

8. Threat Models

For hacking numeric password and colored circles password,
we assume two threat models: 1) single video iterative at-
tack, and 2) dual video iterative attack. Figure@l shows the
placement of front and back cameras used to record videos
of the users while authenticating.

Back Camera

Front Camery

d
Front Camera Fee ack Camera Fe od

Figure 5: a) Authentication: front and back camera positions
for both single and dual video threat models, b) Hacking: a
user emulating a hacker is trying to guess the colored circles
password through dual video iterative attack (static-dynamic
interface).

8.0.1 Single Video Iterative Attack

In this model of attack, the attacker is made available a video
stream (front camera) of the user’s face showing clearly the
eye movements while authenticating. This is similar to a
casual observer focusing on the eyes of the victim while
the victim is authenticating on a gaze-based system. Here,
availability of the video extensively helps the attacker since
the attacker can watch the video any number of times, and
control the video playback for deeper analysis.

8.0.2 Dual Video Iterative Attack

In the dual video iterative attack, the attacker is made avail-
able two video streams: 1) a video stream (front camera)
of the user’s face showing clearly the eye movements while
authenticating, 2) a video stream (back camera) of the au-
thentication interface showing clearly any dynamic changes
on the interface. For example, a video of the interface show-
ing the transition paths of the circles, their colors, and the
circles interchanging their positions for each new animation.

9. Password Hacking

We recruited 12 participants (9 male, 3 female) whose ages
varied between 18 and 30 (Ugg. = 23.75). Each participant
attempted to hack 2 numeric passwords and 2 colored circle
passwords, and the order of passwords presented was coun-
terbalanced. For each password, the participant was given a
comfortable time limit of 10 minutes or 3 tries, whichever
is earliest, as real-world systems (ATMs) block access after
3 unsuccessful attempts. Also, the participant was given
complete control over the video playback as she could watch
the video multiple times, pause, play, seek, etc.

9.1. Numeric Password Hacking

Numeric password hacking was evaluated under a threat
model of single video iterative attack (video of the user’s
face), and this attack requires no second video since the
interface does not change. Each participant was provided a
video of a user authenticating using a numeric password. The
video was randomly chosen from a set of videos recorded in
the first phase.

Table 7: Numeric Password Hacking: the number of pass-
words recognized across each try.

Single 4 (16.7%) 6 (25%) 9@37.5%) 792%

A total of 24 passwords were attacked (12 x 2), and 79.2%
(19/24) passwords were correctly recognized. The cumu-
lative time taken to attack all the 24 passwords was 104
minutes, leading to an average time of 4.33 minutes spent
on hacking a password either successfully or not. Table
shows the number of passwords recognized across each try.

9.2. Colored Circles Password Hacking

For hacking the authentication based on moving colored
circles strategy, we considered the static-dynamic interface
(800 x 800 dimension and 2 seconds animation) as it was
found to be the most practical authentication method com-
pared to dynamic interface. Hacking passwords on the static-
dynamic interface was evaluated under two threat models.

Table 8: Colored Circles Password Hacking: number of
passwords recognized across each try.

Single 0 0 0 0%
Dual 4 (16.7%) 0 0 16.7%

9.2.1 Single Video Iterative Attack

Each participant was provided the video (front camera -
user’s face) of a user authenticating on the static-dynamic
interface (chosen randomly). A total of 24 passwords were
attacked (12 x 2), and 0% (0/24) passwords were correctly
recognized (Table). The cumulative time taken to attack
all the 24 passwords was 58 minutes, leading to an average
time of 2.42 minutes spent on hacking a password either
successfully or not. As expected, no password was hacked
since the participant only had access to the video stream
showing the user’s face, but the interface was dynamic, and
the circles move and change their positions randomly.

9.2.2 Dual Video Iterative Attack

This is an advanced attack, as we are assuming that the
hacker has access to two videos, one showing the user’s
face (front camera) and the other showing the authentica-
tion interface (back camera) as shown in Figure [5p. Each
participant was provided with two videos (user’s face and
interface) of a user authenticating (chosen randomly). A
total of 24 passwords were attacked (12 x 2), and 16.7%
(4/24) passwords were correctly recognized. The cumulative
time taken to attack all the 24 passwords was 202 minutes,
leading to an average time of 8.46 minutes spent on hacking
a password either successfully or not. While this kind of
attack is sophisticated, our system is still resilient to such
attacks. Table [§|shows the number of passwords recognized
across each try.

We hypothesized that participants would not be able to recog-
nize the password even with dual videos, and even if they do,
it would take more than 3 tries. Interestingly, 4 passwords
were recognized in the first try. 1 participant recognized 2
passwords, and 2 participants recognized 1 each. During the
interview, these participants shared that they could recognize
the password as they were able to precisely sync both videos
and identify the start and end of each animation. The video
sync was achieved as the victim (user authenticating) was un-
knowingly giving out the information about the start and end
of the animation by either hitting the hot key hard (animation
trigger) or was taking long pauses between animations.

10. Discussion

We discuss how the accuracy and resilience to video analysis
attacks are influenced by various parameters of the system.

Interface Dynamics Vs Accuracy: By comparing the
accuracies and feedback from the users for both the dynamic
and static-dynamic interfaces, it is suggestive that as the
interface becomes more dynamic (all moving circles)
the users find it overwhelming for a focused task like
authentication, resulting in reduced accuracy. In addition,
to achieve high accuracy when using gaze gesture-based
authentication, the interface should support a moderate
margin of error. For example, on the static-dynamic
interface only 5 circles move during an animation, and this
reduces the chances of generating similar paths—i.e., support-
ing a moderate margin of error—unlike the dynamic interface.

Authentication Time Vs Accuracy: Considering only
the static-dynamic interface, it can be observed that for
animation speed of 2 seconds or higher the accuracy does
not differ much (3 seconds 98.75%, 2 seconds 97.5%, P
> 0.05). Hence, with an animation speed of 2 seconds,
considering a 4 colors password, the least authentication
time is 8 seconds. As we found through additional studies,

reducing the authentication time by reducing the animation
speed to 1 second (circles move fast) brings down the
accuracy to 70%. However, with 2 seconds animation, based
on the level of security required, reducing the password
length to less than 4 colors will reduce the authentication
time to below 8 seconds.

Interface Dynamics Vs Video Analysis Attacks: From
the “Password Hacking" study we found that our interface
with moving circles was more secure than the static (PIN)
interface. 79.2% of the passwords were recognized on the
PIN (static) interface. The moving circles interface was not
susceptible to single video iterative attack, and had a low
success rate with dual video iterative attacks (16.7%). We
believe that future gaze-based authentication systems should
adopt an interface with dynamic events to prevent video
analysis attacks. However, it needs to be ensured that such a
dynamic interface does not overwhelm the user.

Limitations: Few limitations of our approach are that users
with colorblindness will have limited set of colors to choose
from as they can not distinguish few colors. A solution
would be to have different shapes with different colors, while
creating no visual overload. Furthermore, an authentication
time of ~ 8 seconds would not be appropriate in cases where
the authentication is performed frequently.

11. Conclusion and Future Work

We presented a dynamic gaze gesture-based authentication
system to counter shoulder surfing attacks. We also ex-
plored two authentication interfaces: 1) a dynamic inter-
face, and 2) a static-dynamic interface that leverage gaze
gestures. Through system evaluations, we found that the
static-dynamic interface with an animation speed of 2 sec-
onds is the most practical solution of the two interfaces. We
further evaluated the resiliency of our authentication method
to video analysis attacks, and found that our system is not
susceptible to single video iterative attacks, and has lower
success rate with dual video iterative attacks compared to a
PIN- and gaze-based system. As future enhancements, we
will try to reduce the authentication time and improve the
password memorability through interface modifications.

References

[1] D. S. Best and A. T. Duchowski. A rotary dial for gaze-
based pin entry. In Proceedings of the Ninth Biennial ACM
Symposium on Eye Tracking Research & Applications, ETRA
’16, pages 69-76. ACM, 2016.

[2] A. Bulling, F. Alt, and A. Schmidt. Increasing the security
of gaze-based cued-recall graphical passwords using saliency
masks. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI 12. ACM, 2012.

[3] D.H. Cymek, A. C. Venjakob, S. Ruff, O. H.-M. Lutz, S. Hof-
mann, and M. Roetting. Entering pin codes by smooth pursuit
eye movements. Journal of Eye Movement Research, 2014.

[4] A. De Luca, M. Denzel, and H. Hussmann. Look into my
eyes!: Can you guess my password? In Proceedings of the
5th Symposium on Usable Privacy and Security, SOUPS *09,
pages 7:1-7:12. ACM, 2009.

[5] A.De Luca, R. Weiss, and H. Drewes. Evaluation of eye-gaze
interaction methods for security enhanced pin-entry. In Pro-
ceedings of the 19th Australasian Conference on Computer-
Human Interaction: Entertaining User Interfaces, OZCHI
’07, pages 199-202. ACM, 2007.

[6] M. Eiband, M. Khamis, E. von Zezschwitz, H. Hussmann,

and F. Alt. Understanding shoulder surfing in the wild: Stories

from users and observers. In Proceedings of the 35th Annual

ACM Conference on Human Factors in Computing Systems,

CHI ’17. ACM, 2017.

P. Institute. Global Visual Hacking Experimental Study: Anal-

ysis. 2016.

[8] M. Khamis, F. Alt, M. Hassib, E. von Zezschwitz,
R. Hasholzner, and A. Bulling. Gazetouchpass: Multimodal
authentication using gaze and touch on mobile devices. In
Proceedings of the 2016 CHI Conference Extended Abstracts
on Human Factors in Computing Systems, CHI EA 16, pages
2156-2164. ACM, 2016.

[9] M. Kumar, T. Garfinkel, D. Boneh, and T. Winograd. Reduc-
ing shoulder-surfing by using gaze-based password entry. In
Proceedings of the 3rd Symposium on Usable Privacy and
Security, SOUPS ’07, pages 13-19. ACM, 2007.

[10] A. Leon-Garcia and A. Leon-Garcia. Probability, statis-
tics, and random processes for electrical engineering. Pear-
son/Prentice Hall 3rd ed. Upper Saddle River, NJ, 2008.

[11] V.1 Levenshtein. Binary codes capable of correcting dele-
tions, insertions, and reversals. In Soviet physics doklady,
volume 10, pages 707-710, 1966.

[12] J. Long. No tech hacking: A guide to social engineering,
dumpster diving, and shoulder surfing. Syngress, 2011.

[13] V. Rajanna and T. Hammond. Gawschi: Gaze-augmented,
wearable-supplemented computer-human interaction. In Pro-
ceedings of the Ninth Biennial ACM Symposium on Eye Track-
ing Research & Applications, ETRA 16, pages 233-236,
New York, NY, USA, 2016. ACM.

[14] V. Rajanna, P. Taele, S. Polsley, and T. Hammond. A gaze
gesture-based user authentication system to counter shoulder-
surfing attacks. In Proceedings of the 2017 CHI Conference
Extended Abstracts on Human Factors in Computing Systems,
CHI EA °17. ACM, 2017.

[15] M. Vidal, A. Bulling, and H. Gellersen. Pursuits: Spon-
taneous interaction with displays based on smooth pursuit
eye movement and moving targets. In Proceedings of the
2013 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, UbiComp *13. ACM, 2013.

[16] J. O. Wobbrock, A. D. Wilson, and Y. Li. Gestures without
libraries, toolkits or training: A $1 recognizer for user in-
terface prototypes. In Proceedings of the 20th Annual ACM
Symposium on User Interface Software and Technology, UIST
’07, pages 159-168. ACM, 2007.

[7

—

